Mayers, D. and Yao, A. Quantum cryptography with imperfect equipment. In Proc. thirty ninth Annual Symposium on Foundations of Pc Science 503–509 (IEEE, 1998).
Acn, A. et al. Gadget-independent safety of quantum cryptography towards collective assaults. Phys. Rev. Lett. 98, 230501 (2007).
Pironio, S. Gadget-independent quantum key distribution safe towards collective assaults. New J. Phys. 11, 045021 (2009).
Barrett, J., Hardy, L. & Kent, A. No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005).
Reichardt, B. W., Unger, F. & Vazirani, U. Classical command of quantum techniques. Nature 496, 456–460 (2013).
Lim, C. C. W., Portmann, C., Tomamichel, M., Renner, R. & Gisin, N. Gadget-independent quantum key distribution with native Bell check. Phys. Rev. X 3, 031006 (2013).
Vazirani, U. & Vidick, T. Totally device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).
Miller, C. A. & Shi, Y. Strong protocols for securely increasing randomness and distributing keys utilizing untrusted quantum gadgets. J. ACM 63, 1–63 (2016).
Arnon-Friedman, R. et al. Sensible device-independent quantum cryptography through entropy accumulation. Nat. Commun. 9, 459 (2018).
Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fizik. 1, 195–200 (1965).
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).
Scarani, V. Bell Nonlocality (Oxford Univ. Press, 2019).
Xu, F., Ma, X., Zhang, Q., Lo, H.-Ok. & Pan, J.-W. Safe quantum key distribution with reasonable gadgets. Rev. Mod. Phys. 92, 025002 (2020).
Rosenfeld, W. et al. Occasion-ready Bell check utilizing entangled atoms concurrently closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017).
Schwonnek, R. et al. Gadget-independent quantum key distribution with random key foundation. Nat. Commun. 12, 2880 (2021).
Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014).
Ekert, A. Ok. Quantum cryptography based mostly on Bell’s theorem. Phys. Rev. Lett. 67, 661663 (1991).
Scarani, V. et al. The safety of sensible quantum key distribution. Rev. Mod. Phys. 81, 1301–1350 (2009).
Hensen, B. et al. Loophole-free Bell inequality violation utilizing electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
Giustina, M. et al. Vital-loophole-free check of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).
Shalm, L. Ok. et al. Robust loophole-free check of native realism. Phys. Rev. Lett. 115, 250402 (2015).
Murta, G. et al. In the direction of a realization of device-independent quantum key distribution. Quantum Sci. Technol. 4, 035011 (2019).
Ho, M. et al. Noisy preprocessing facilitates a photonic realization of device-independent quantum key distribution. Phys. Rev. Lett. 124, 230502 (2020).
Xu, F., Zhang, Y.-Z., Zhang, Q. & Pan, J.-W. Gadget-independent quantum key distribution with random postselection. Phys. Rev. Lett. 128, 110506 (2022).
Nadlinger, D. P. et al. Experimental quantum key distribution licensed by Bell’s theorem. Nature https://doi.org/10.1038/s41586-022-04941-5 (2002).
Liu, W.-Z. et al. Photonic verification of device-independent quantum key distribution towards collective assaults. Preprint at https://arxiv.org/abs/2110.01480 (2021).
Arnon-Friedman, R., Renner, R. & Vidick, T. Easy and tight device-independent safety proofs. SIAM J. Comput. 48, 181–225 (2019).
Clauser, J. F. et al. Proposed experiment to check native hidden-variable theories. Phys. Rev. Lett. 23, 880884 (1969).
Renner, R. Safety of quantum key distribution. Int. J. Quantum Inf. 6, 1–127 (2008).
Tan, E. Y. Z. et al. Improved DIQKD protocols with finite-size evaluation. Preprint at https://arxiv.org/abs/2012.08714 (2020).
Hofmann, J. et al. Heralded entanglement between extensively separated atoms. Science 337, 72–75 (2012).
van Leent, T. et al. Lengthy-distance distribution of atom-photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020).
Fürst, M. Excessive velocity optical quantum random quantity era. Decide. Categorical 18, 1302913037 (2010).
Braunstein, S. L. & Pirandola, S. Aspect-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).
van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature https://doi.org/10.1038/s41586-022-04764-4 (2022).
Portmann, C. & Renner, R. Safety in quantum cryptography. Preprint at https://arxiv.org/abs/2102.00021 (2021).
Endres, M. et al. Atom-by-atom meeting of defect-free one-dimensional chilly atom arrays. Science 354, 1024–1027 (2016).
Barredo, D., De Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 354, 1021–1023 (2016).
Ohl de Mello, D. et al. Defect-free meeting of 2D clusters of greater than 100 single-atom quantum techniques. Phys. Rev. Lett. 122, 203601 (2019).
Schupp, J. et al. Interface between trapped-ion qubits and touring photons with close-to-optimal effectivity. PRX Quantum 2, 020331 (2021).
Volz, J. et al. Remark of entanglement of a single photon with a trapped atom. Phys. Rev. Lett. 96, 030404 (2006).
Rosenfeld, W. Experiments with an Entangled System of a Single Atom and a Single Photon. PhD thesis, Ludwig-Maximilians-Universität München (2008).