Sunday, July 31, 2022
HomeNatureMolecular interaction of an meeting equipment for nitrous oxide reductase

Molecular interaction of an meeting equipment for nitrous oxide reductase


  • Thompson, R. L. et al. Acceleration of worldwide N2O emissions seen from twenty years of atmospheric inversion. Nat. Clim. Chang. 9, 993–997 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted within the twenty first century. Science 326, 123–125 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tian, H. Q. et al. A complete quantification of worldwide nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Honisch, U. & Zumft, W. G. Operon construction and regulation of the nos gene area of Pseudomonas stutzeri, encoding an ABC-type ATPase for maturation of nitrous oxide reductase. J. Bacteriol. 185, 1895–1902 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumft, W. G. & Kroneck, P. M. H. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Micro organism and Archaea. Adv. Microb. Physiol. 52, 107–225 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pomowski, A., Zumft, W. G., Kroneck, P. M. H. & Einsle, O. N2O binding at a [4Cu:2S] copper–sulphur cluster in nitrous oxide reductase. Nature 477, 234–237 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Thomson, A. J., Giannopoulos, G., Fairly, J., Baggs, E. M. & Richardson, D. J. Organic sources and sinks of nitrous oxide and techniques to mitigate emissions. Phil. Trans. R. Soc. B 367, 1157–1168 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Butterbach-Bahl, Okay., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: how effectively can we perceive the processes and their controls? Phil. Trans. R. Soc. B 368, 20130122 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Jansson, J. Okay. & Hofmockel, Okay. S. Soil microbiomes and local weather change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Stein, L. Y. The long-term relationship between microbial metabolism and greenhouse gases. Developments Microbiol. 28, 500–511 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Torres, M. J. et al. Nitrous oxide metabolism in nitrate-reducing micro organism: physiology and regulatory mechanisms. Adv. Microb. Physiol. 68, 353–432 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pauleta, S. R., Carepo, M. S. P. & Moura, I. Supply and discount of nitrous oxide. Coord. Chem. Rev. 387, 436–449 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Solomon, E. I. et al. Copper energetic websites in biology. Chem. Rev. 114, 3659–3853 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Dupont, C. L., Grass, G. & Rensing, C. Copper toxicity and the origin of bacterial resistance—new insights and purposes. Metallomics 3, 1109–1118 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schneider, L. Okay. & Einsle, O. Function of calcium in secondary construction stabilization throughout maturation of nitrous oxide reductase. Biochemistry 55, 1433–1440 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Locher, Okay. P. Mechanistic variety in ATP-binding cassette (ABC) transporters. Nat. Struct. Mol. Biol. 23, 487–493 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Higgins, C. F. ABC transporters: from microorganisms to man. Annu. Rev. Cell Biol. 8, 67–113 (1992).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Y. Y., Orlando, B. J. & Liao, M. F. Structural foundation of lipopolysaccharide extraction by the LptB2FGC complicated. Nature 567, 486–490 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fitzpatrick, A. W. P. et al. Construction of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nat. Microbiol. 2, 17070 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumft, W. G., Viebrock-Sambale, A. & Braun, C. Nitrous oxide reductase from denitrifying Pseudomonas stutzeri—genes for copper-processing and properties of the deduced merchandise, together with a brand new member of the household of ATP/GTP-binding proteins. Eur. J. Biochem. 192, 591–599 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, L., Wüst, A., Prasser, B., Müller, C. & Einsle, O. Practical meeting of nitrous oxide reductase supplies insights into copper web site maturation. Proc. Natl Acad. Sci. USA 116, 12822–12827 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zumft, W. G. Biogenesis of the bacterial respiratory CuA, Cu–S enzyme nitrous oxide reductase. J. Mol. Microbiol. Biotechnol. 10, 154–166 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Wunsch, P. & Zumft, W. G. Practical domains of NosR, a novel transmembrane iron-sulfur flavoprotein essential for nitrous oxide respiration. J. Bacteriol. 187, 1992–2001 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bennett, S. P. et al. NosL is a devoted copper chaperone for meeting of the CuZ heart of nitrous oxide reductase. Chem. Sci. 10, 4985–4993 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McGuirl, M. A., Bollinger, J. A., Cosper, N., Scott, R. A. & Dooley, D. M. Expression, purification, and characterization of NosL, a novel Cu(II) protein of the nitrous oxide reductase (nos) gene cluster. J. Biol. Inorg. Chem. 6, 189–195 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Okuda, S. & Tokuda, H. Lipoprotein sorting in micro organism. Annu. Rev. Microbiol. 65, 239–259 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ciccarelli, F. D., Copley, R. R., Doerks, T., Russell, R. B. & Bork, P. CASH—a β-helix area widespread amongst carbohydrate-binding proteins. Developments Biochem. Sci. 27, 59–62 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, J. Y. et al. Crystal construction of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thomas, C. & Tampé, R. Multifaceted constructions and mechanisms of ABC transport methods in well being and illness. Curr. Opin. Struct. Biol. 51, 116–128 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rees, D. C., Johnson, E. & Lewinson, O. ABC transporters: the facility to alter. Nat. Rev. Mol. Cell Biol. 10, 218–227 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bi, Y. C., Mann, E., Whitfield, C. & Zimmer, J. Structure of a channel-forming O-antigen polysaccharide ABC transporter. Nature 553, 361–365 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qian, H. W. et al. Construction of the human lipid exporter ABCA1. Cell 169, 1228–1234 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Diederichs, Okay. et al. Crystal construction of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 19, 5951–5961 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nguyen, P. T., Lai, J. Y., Lee, A. T., Kaiser, J. T. & Rees, D. C. Noncanonical function for the binding protein in substrate uptake by the MetNI methionine ATP binding cassette (ABC) transporter. Proc. Natl Acad. Sci. USA 115, E10596–E10604 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal construction of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Manolaridis, I. et al. Cryo-EM constructions of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 426–430 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Banci, L., Bertini, I., Del Conte, R., Markey, J. & Ruiz-Duenas, F. J. Copper trafficking: the answer construction of Bacillus subtilis CopZ. Biochemistry 40, 15660–15668 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Culotta, V. C. et al. The copper chaperone for superoxide dismutase. J. Biol. Chem. 272, 23469–23472 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prasser, B., Schöner, L., Zhang, L. & Einsle, O. The copper chaperone NosL varieties a heterometal web site for Cu supply to nitrous oxide reductase. Angew. Chem. Int. Edn Engl. 60, 18810–18814 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. Okay. & Pease, L. R. Web site-directed mutagenesis by overlap extension utilizing the polymerase chain response. Gene 77, 51–59 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ritchie, T. Okay. et al. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Strategies Enzymol. 464, 211–231 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chifflet, S., Torriglia, A., Chiesa, R. & Tolosa, S. A way for the willpower of inorganic phosphate within the presence of labile natural phosphate and excessive concentrations of protein—utility to lens ATPases. Anal. Biochem. 168, 1–4 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography utilizing sturdy prediction of specimen actions. J. Struct. Biol. 152, 36–51 (2005).

    PubMed 
    Article 

    Google Scholar
     

  • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced movement for improved cryo-electron microscopy. Nat. Strategies 14, 331–332 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. W. RELION: implementation of a Bayesian method to cryo-EM construction willpower. J. Struct. Biol. 180, 519–530 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zivanov, J. et al. New instruments for automated high-resolution cryo-EM construction willpower in RELION-3. eLife 7, e42166 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang, Okay. Gctf: real-time CTF willpower and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rohou, A. & Grigorieff, N. CTFFIND4: quick and correct defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for speedy unsupervised cryo-EM construction willpower. Nat. Strategies 14, 290–296 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian method to beam-induced movement correction in cryo-EM single-particle evaluation. IUCrJ 6, 5–17 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM knowledge in RELION. Strategies Enzymol. 579, 125–157 (2016).

  • Bai, X. C., Rajendra, E., Yang, G. H., Shi, Y. G. & Scheres, S. H. W. Sampling the conformational house of the catalytic subunit of human γ-secretase. eLife 4, e11182 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a complete Python-based system for macromolecular construction resolution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, Okay. Options and improvement of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: extra and higher reference knowledge for improved all-atom construction validation. Protein Sci. 27, 293–315 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, L., Trncik, C., Andrade, S. L. & Einsle, O. The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide discount. Biochim. Biophys. Acta 1858, 95–102 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Dell’Acqua, S. et al. Electron switch complicated between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking research. Biochemistry 47, 10852–10862 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jumper, J. et al. Extremely correct protein construction prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments